Totally umbilical semi-invariant submanifolds of a nearly cosymplectic manifold

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on Totally Umbilical Pseudo-slant Submanifolds of a Nearly Kaehler Manifold

In this paper, we study pseudo-slant submanifolds of nearly Kaehler manifolds. A classification theorem on a totally umbilical pseudo-slant submanifold of a nearly Kaehler manifold is proved. 2000 Mathematics Subject Classification: 53C40, 53B25, 53C15.

متن کامل

A Geometric Inequality for Warped Product Semi-slant Submanifolds of Nearly Cosymplectic Manifolds

Recently, we have shown that there do not exist warped product semi-slant submanifolds of cosymplectic manifolds [K.A. Khan, V.A. Khan and Siraj Uddin, Balkan J. Geom. Appl. 13 (2008), 55–65]. The nearly cosymplectic structure generalizes the cosymplectic one. Therefore the nearly Kaehler structure generalizes the Kaehler structure in almost Hermitian setting. It is interesting that the warped ...

متن کامل

Semi-invariant Products of a Nearly Sasakian Manifold

In this paper, we give some sufficient conditions for semi– invariant product of a nearly Sasakian manifold, and generalize Bejancu’s result.

متن کامل

Extrinsic sphere and totally umbilical submanifolds in Finsler spaces

‎Based on a definition for circle in Finsler space‎, ‎recently proposed by one of the present authors and Z‎. ‎Shen‎, ‎a natural definition of extrinsic sphere in Finsler geometry is given and it is shown that a connected submanifold of a Finsler manifold is totally umbilical and has non-zero parallel mean curvature vector field‎, ‎if and only if its circles coincide with circles of the ambient...

متن کامل

Application of Hopf's lemma on contact CR-warped product submanifolds of a nearly Kenmotsu manifold

In this paper we consider contact CR-warped product submanifolds of the type $M = N_Ttimes_f N_perp$, of a nearly Kenmotsu generalized Sasakian space form $bar M(f_1‎, ‎f_2‎, ‎f_3)$ and by use of Hopf's Lemma we show that $M$ is simply contact CR-product under certain condition‎. ‎Finally‎, ‎we establish a sharp inequality for squared norm of the second fundamental form and equality case is dis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2006

ISSN: 0354-5180

DOI: 10.2298/fil0602038k